Hall T	Code No.: 21602 S
1	VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year I-Semester (Supplementary) Examinations, May/June-2016
	Bridge Course : Physics of Materials Max. Marks: 25
T	ime: 1½ hours Note: Answer ALL questions in Part-A and any TWO from Part-B
	Part-A (5 X 1=5 Marks)
1.	The Magnetic susceptibility of a ferromagnetic material is and
2.	
	a) R^3 b) R^2 c) R d) R^{-1}
3.	A solar cell converts sunlight directly into electricity by
	a) Photo electric effect b) Photovoltaic effect
	c) Thermo electric effect d) none
4.	Write any two applications of Nanomaterials.
5.	Soft magnetic material possess retentivity and coercivity
	Part-B (2 X 10=20 Marks) (All bits carry equal marks)
6.	a) Discuss different types of polarizations in a dielectric medium.
	b) Explain Ferromagnetic Hysteresis on the basis of Weiss theory of domain.
7.	a) Explain working principle of photo diode and mention few applications.
	b) Explain the terms surface to volume ratio and quantum confinement.
8.	a) Distinguish between ferro - , ferri -, and anti-ferromagnetic materials.
	b) Obtain an expression for an intrinsic concentration of a semiconductor.
